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The RNA model
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A secondary structure is a list of base pairs that fulfills two constraints:

A base may participate in at most one base pair.

Base pairs must not cross, i.e., no two pairs (i , j) and (k, l) may have i < k < j < l .
(no pseudo-knots)

The optimal as well as the suboptimal structures can be computed recursively.



The HP-model

In this simplified model, a conformation is a
self-avoiding walk (SAW) on a given lattice in 2
or 3 dimensions. Each bond is a straight line,
bond angles have a few discrete values. The 20
letter alphabet of amino acids (monomers) is
reduced to a two letter alphabet, namely H and
P. H represents hydrophobic monomers, P
represents hydrophilic or polar monomers.

Advantages:

lattice-independent folding algorithms

simple energy function

hydrophobicity can be reasonably modeled
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Energy functions

RNA

The standard energy model expresses the free
energy of a secondary structure S as the sum
of the energies of its loops l

E (S) = ∑
l∈S

E (l)
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Lattice Proteins

The energy function for a sequence with
n residues S = s1s2 . . .sn with si ∈ A =
{a1,a2 , . . . ,ab}, the alphabet of b residues, and
an overall configuration x = (x1,x2, . . . ,xn) on
a lattice L can be written as the sum of pair
potentials

E (S,x) = ∑
i < j−1
|xi −xj |= 1

Ψ[si ,sj ].

H P

H −1 0

P 0 0

H P N X

H −4 0 0 0

P 0 1 −1 0

N 0 −1 1 0

X 0 0 0 0

E =−16



Folding landscape - energy landscape

The energy landscape of a biopolymer molecule is a complex surface of
the (free) energy versus the conformational degrees of freedom.

Number of RNA secondary structures

cn ∼ 1.86n ·n− 3
2

dynamic programming algorithms available

Number of LP structures
cn ∼ µn ·nγ−1

problem is NP-hard

dim Lattice Type µ γ
SQ 2.63820 1.34275

2 TRI 4.15076 1.343
HEX 1.84777 1.345
SC 4.68391 1.161

3 BCC 6.53036 1.161
FCC 10.0364 1.162

Formally, three things are needed to construct an energy landscape:

A set X of configurations

an energy function f : X → R

a symmetric neighborhood relation N : X ×X
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The move set
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For each move there must be an inverse move

Resulting structure must be in X

Move set must be ergodic



Energy barriers and barrier trees

Some topological definitions:

A structure is a

local minimum if its energy is lower
than the energy of all neighbors

local maximum if its energy is higher
than the energy of all neighbors

saddle point if there are at least two
local minima thar can be reached by a
downhill walk starting at this point
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C. Flamm, I. L. Hofacker, P. F. Stadler, and M. T. Wolfinger.

Barrier trees of degenerate landscapes.
Z. Phys. Chem., 216:155–173, 2002.



The algorithm of Barriers

Barriers

Require: all suboptimal secondary structures within a certain energy range from mfe
1: B⇐ /0
2: for all x ∈ subopt do

3: K ⇐ /0
4: N ⇐ generate neighbors(x)
5: for all y ∈N do

6: if b⇐ lookup hash(y) then

7: K ⇐K ∪b

8: end if

9: end for

10: if K = /0 then

11: B⇐B∪{x}
12: end if

13: if |K | ≥ 2 then

14: merge basins(K )
15: end if

16: write hash(x)
17: end for



The flooding algorithm
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The flooding algorithm
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Barrier tree example



Information from the barrier trees

Local minima
Saddle points
Barrier heights

Gradient basins
Partition functions
Free energies of (gradient) basins

With this information, a reduced dynamics can be formulated as a Markov
process by means of macrostates (i.e. basins in the barrier tree) and
Arrhenius-like transition rates between them.

d

dt
Pt = UPt =⇒ Pt = e

tU
P0

macro-states form a partition of the
full configuration space

transition rates between macro-states

rβ α = Γβ α exp
(

−(E ∗β α −Gα )/kT
)
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M. T. Wolfinger, W. A. Svrcek-Seiler, C. Flamm, I. L. Hofacker, and P. F. Stadler.

Efficient computation of RNA folding dynamics.
J. Phys. A: Math. Gen., 37(17):4731–4741, 2004.



Barrier tree dynamics - problems and pitfalls

The method works fine for moderately sized systems.

Currently, we consider approx. 100 million structures within a single run
of Barriers to calculate the topology of the landscape.

However, we are interested in larger systems:

biologically relevant RNA switches

large 3D lattice proteins

The next steps:

use high-level diagonalization routines for sparse matrices

calculate low-energy structures

sample (thermodynamics properties of) individual basins

sample low-enery refolding paths
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Wang-Landau sampling

”A dynamic Monte Carlo algorithm to estimate the density of states by
performing a random walk in energy space with a flat histogram”

F. Wang and D. P. Landau.

Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States.
Phys. Rev. Lett., 86:2050–2053, 2001.

The classical partition function can be written as the sum over all states,
or over all energies, i.e.

Z = ∑
i

e−Ei/kT ≡∑
E

g(E )e−E/kT

Wang-Landau sampling estimates g(E ) directly, instead of trying to
extract it from a ’standard’ Monte Carlo probability distribution.



Monte Carlo basics

Generally, any (probability) distribution can be sampled by a Monte
Carlo-type algorithm. Prerequisites: Detailed Balance

π(x)p(x → y) = π(y)p(y → x)

The probability of state x occuring in a classical system, is
π(x) = 1

Z
e−Ex/kT (“Boltzmann-sampling”)

Metropolis rule:

p(x → y) = min

(

1,
π(y)

π(x)

)

In Wang-Landau sampling, we have π(x) = 1
g(Ex ) and thus

p(x → y) = min

(

1,
g(Ex)

g(Ey)

)
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Wang-Landau basics

Wang-Landau sampling assumes a crude ’guess’ for the density of states,
i.e. g(Ex) = 1 for all x .
Starting from an (arbitrary) initial state, a random neighbor is chosen
with a transition probability

p(x → y) = min

(

1,
g(Ex)

g(Ey)

)

If the move is accepted, the value of g(Ey) is multiplied with a
modfication factor f > 1 and the histogram entry h(Ey ) is updated.

If the move is rejected, g(Ex) is multiplied with f and h(Ex) is
incremented.

In practice, we work with the logarithm of the density of states, i.e. an update of the density of

states yields ln[g(E )]→ ln[g(E )]+ ln(f ).
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Wang-Landau continued

A reasonable initial value for the modification factor is f = e1 ≃ 2.71828.
The random walk is continued until the histogram h(E ) is ’flat’1, which is
typically checked for every 106 iterations.
→ all energy bins have been visited an euqal number of times.
→ the density of states converges to the true value prop. ln(f ).

Then, f is reduced to f 1/2, i.e. f1 =
√

f0 and h(E ) is reset to 0.

The random walk is continued, until the histogram becomes ’flat’ again,
in which case we reset h(E ) and modify f to

√
f . This is done, until a

final value of f = exp(10−8)≃ 1.00000001 is reached.

After many iterations, g(E ) converges to the true value as f approaches
1. At that point, the random walk satifies detailed balance:

1

g(Ex)
p(Ex → Ey) =

1

g(Ey)
p(Ey → Ex)

1’flat’ means that h(E)≥ 0.8〈h(E)〉 for all E
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Wang-Landau sampling - pseudocode

Require: a start structure x compatible with sequence S

Ensure: for all E : g(E)← 1 and for all E : h(E)← 0
1: f ← f0 = exp(1)
2: E1← energy(x)
3: N ← generate neighbors(x)
4: repeat

5: y ← get random neighbor(N )
6: E2← energy(y)
7: ξ ← g(E1)/g(E2)
8: r ← random number() // from [0;1]
9: if r < ξ then // accept the move

10: E1← E2

11: N ← generate neighbors(y)
12: end if

13: g(E1)← g(E1)∗ f
14: h(E1)← h(E1)+1
15: if histogram is flat() then

16: f ← f 1/2

17: reset histogram()
18: else

19: goto 5
20: end if

21: until f ← fmin ∼ exp(10−8)



Wang-Landau - RNA example
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Wang-Landau - Density of States
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Wang-Landau - DoS at different T
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Wang-Landau - LP example
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Thermodynamics

Relevant thermodynamic quantities can easily be calutaed from the DoS

U(T ) =
∑E E g(E )e−E/kT

∑E g(E )e−E/kT
≡ 〈E 〉T

C (T ) =
∂U(T )

∂T
=
〈E 2〉T −〈E 〉2T

kT 2

F (T ) =−kT ln(Z ) =−kT ln

(

∑
E

g(E )e−E/kT

)

S(T ) =
U(T )−F (T )

T



Thermodynamics of a short, artificial LP

HHPHPPHPHPHHPH n = 14
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Basin sampling

1: f ← f0 = exp(1)
2: E1← energy(x)
3: α ← get gradient basin(x)
4: N ← generate neighbors(x)
5: repeat

6: y ← get random neighbor(N )
7: E2← energy(y)
8: ξ ← g(E1)/g(E2)
9: r ← random number() // from [0;1]
10: if r < ξ then // accept the move
11: β ← get gradient basin(y)
12: if α ! = β then

13: continue

14: E1← E2

15: N ← generate neighbors(y)
16: end if

17: g(E1)← g(E1)∗ f
18: h(E1)← h(E1)+1
19: if histogram is flat() then

20: f ← f 1/2

21: reset histogram()
22: else

23: goto 6
24: end if

25: until f ← fmin ∼ exp(10−8)



The PathFinder tool

A heuristic approach to efficiently estimate low-energy refolding paths

Overall procedure for direct paths:
1 Calculate distance bewteen start and target structure

2 Generate all neighbors of the start structure whose distance to the target is less
than the distance of the start structure

3 Sort those neighbor structures by their energies

4 Take the n energetically best structures, take them as new starting points and
repeat the procedure until the stop structure is found

5 If a path has been found, try to find another one with lower energy barrier
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PathFinder example - SV11

SV11 is a RNA switch of length 115

E =−69.2 kcal/mol
metastable

template for Qβ replicase

E =−96.4 kcal/mol
stable

not a template



SV11 refolding path 1/3: Esaddle =−52.2 kcal/mol
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SV11 refolding path 2/3: Esaddle =−57.7 kcal/mol
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SV11 refolding path 3/3: Esaddle =−59.2 kcal/mol
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SV11 refolding paths
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libPF - a generic path sampling library

In practice, this path sampling heuristics is implemented as a C
library

All structures along a path are stored in a hash and therefore
available for the next iterations

Heuristics routines are strictly separated from model-dependent
routines, i.e. the library is completely generic

Currently, RNA secondary structures and lattice proteins are
implemented

It is easy to extend the functionality to other discrete systems

Current applications:

1 PathFinder

2 Kinwalker

3 ...



Conclusion

Discrete models allow a detailed study of the energy surface

Barrier trees represent the landscape topology

A macrostate approach of folding kinetics reduces simulation time
drastically

Wang-Landau sampling approximates the density of states and
allows the calculation of basin properties

A path sampling approach yields low-energy refolding paths and is a
valuable tool for further kinetics studies
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